题目内容
如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为__________m.
把长为10cm的线段黄金分割后,其中较短的线段长度是_____cm.
如图所示,在△ABC中,∠B=∠C,∠BAD=40°,并且∠ADE=∠AED,求∠CDE的度数.
如图,一面小红旗,其中∠A=60°,∠B=30°,则∠BCA=90°.求解的直接依据是( )
A. 三角形内角和定理
B. 三角形外角和定理
C. 多边形内角和公式
D. 多边形外角和公式
图①中是一座钢管混泥土系杆拱桥,桥的拱肋ACB可视为抛物线的一部分(如图②),桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋的跨度AB为200米,与AB中点O相距20米处有一高度为48米的系杆.
(1)求正中间系杆OC的长度
(2)若相邻系杆之间的间距均为5米(不考虑系杆的粗细),则是否存在一根系杆的长度恰好是OC长度的一半?请说明理由。
设函数(为常数),下列说法正确的是( ).
A. 对任意实数,函数与轴都没有交点
B. 存在实数,满足当时,函数的值都随的增大而减小
C. 取不同的值时,二次函数的顶点始终在同一条直线上
D. 对任意实数,抛物线都必定经过唯一定点
对于抛物线,下列说法正确的是( )
A. 开口向下,顶点坐标(5,3) B. 开口向上,顶点坐标(5,3)
C. 开口向下,顶点坐标(-5,3) D. 开口向上,顶点坐标(-5,3)
上海玩具厂年月份生产玩具个,后来生产效率逐月提高,月份生产玩具个,设平均每月增长率为,则可列方程________.
如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为_____.