题目内容
如图,在一张圆桌(圆心为点O)的正上方点A处吊着一盏照明灯,实践证明:桌子边沿处的光的亮度与灯距离桌面的高度AO有关,且当sin∠ABO=![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_ST/0.png)
(参考数据:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_ST/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_ST/3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_ST/images4.png)
【答案】分析:解法一:在直角三角形ABO中,sin∠ABO=
,所以OA=
AB,然后根据勾股定理得OA2+OB2=AB2,且OB=60cm解得OA;
解法二:同解法一类似,只不过少了OA、OB之间的转化,而是根据sin∠ABO=
,分别假设OA=
x,AB=3x,再有OB=60,根据勾股定理先求出x,再进而求出OA的长.
解答:解:
解法一:在Rt△OAB中,
∵sin∠ABO=
,
∴
,
即OA=
AB,
又OA2+OB2=AB2,
且OB=60cm,
解得OA=60
≈85cm,
答:高度OA约为85cm.
解法二:∵OA⊥OB,sin∠ABO=
,
∴可设OA=
x,AB=3x(x>0),
∵OA2+OB2=AB2,
∴(
x)2+602=(3x)2
解得x=20
,
∴OA=60
≈85cm.
答:高度OA约为85cm.
点评:此题首先要正确理解题意,才能把实际问题转化为直角三角形的问题,然后利用三角函数和勾股定理解决问题.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/1.png)
解法二:同解法一类似,只不过少了OA、OB之间的转化,而是根据sin∠ABO=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/3.png)
解答:解:
解法一:在Rt△OAB中,
∵sin∠ABO=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/4.png)
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/5.png)
即OA=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/6.png)
又OA2+OB2=AB2,
且OB=60cm,
解得OA=60
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/7.png)
答:高度OA约为85cm.
解法二:∵OA⊥OB,sin∠ABO=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/8.png)
∴可设OA=
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/9.png)
∵OA2+OB2=AB2,
∴(
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/10.png)
解得x=20
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/11.png)
∴OA=60
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211104853944846501/SYS201312111048539448465004_DA/12.png)
答:高度OA约为85cm.
点评:此题首先要正确理解题意,才能把实际问题转化为直角三角形的问题,然后利用三角函数和勾股定理解决问题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目