题目内容

【题目】已知如图,矩形OABC的长OA= ,宽OC=1,将△AOC沿AC翻折得△APC.

(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=﹣ x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.

【答案】
(1)

解:在Rt△OAC中,OA= ,OC=1,则∠OAC=30°,∠OCA=60°;

根据折叠的性质知:OA=AP= ,∠ACO=∠ACP=60°;

∵∠BCA=∠OAC=30°,且∠ACP=60°,

∴∠PCB=30°.


(2)

解:过P作PQ⊥OA于Q;

Rt△PAQ中,∠PAQ=60°,AP=

∴OQ=AQ= ,PQ=

所以P( );

将P、A代入抛物线的解析式中,得:

解得

即y=﹣ x2+ x+1;

当x=0时,y=1,故C(0,1)在抛物线的图像上


(3)

解:①若DE是平行四边形的对角线,点C在y轴上,CD平行x轴,

∴过点D作DM∥CE交x轴于M,则四边形EMDC为平行四边形,

把y=1代入抛物线解析式得点D的坐标为( ,1)

把y=0代入抛物线解析式得点E的坐标为(﹣ ,0)

∴M( ,0);N点即为C点,坐标是(0,1);

②若DE是平行四边形的边,

过点A作AN∥DE交y轴于N,四边形DANE是平行四边形,

∴DE=AN= = =2,

∵tan∠EAN=

∴∠EAN=30°,

∵∠DEA=∠EAN,

∴∠DEA=30°,

∴M( ,0),N(0,﹣1);

同理过点C作CM∥DE交y轴于N,四边形CMDE是平行四边形,

∴M(﹣ ,0),N(0,1).


【解析】(1)根据OC、OA的长,可求得∠OCA=∠ACP=60°(折叠的性质),∠BCA=∠OAC=30°,由此可判断出∠PCB的度数.(2)过P作PQ⊥OA于Q,在Rt△PAQ中,易知PA=OA=3,而∠PAO=2∠PAC=60°,即可求出AQ、PQ的长,进而可得到点P的坐标,将P、A坐标代入抛物线的解析式中,即可得到b、c的值,从而确定抛物线的解析式,然后将C点坐标代入抛物线的解析式中进行验证即可.(3)根据抛物线的解析式易求得C、D、E点的坐标,然后分两种情况考虑:
①DE是平行四边形的对角线,由于CD∥x轴,且C在y轴上,若过D作直线CE的平行线,那么此直线与x轴的交点即为M点,而N点即为C点,D、E的坐标已经求得,结合平行四边形的性质即可得到点M的坐标,而C点坐标已知,即可得到N点的坐标;
②DE是平行四边形的边,由于A在x轴上,过A作DE的平行线,与y轴的交点即为N点,而M点即为A点;易求得∠DEA的度数,即可得到∠NAO的度数,已知OA的长,通过解直角三角形可求得ON的值,从而确定N点的坐标,而M点与A点重合,其坐标已知;
同理,由于C在y轴上,且CD∥x轴,过C作DE的平行线,也可找到符合条件的M、N点,解法同上.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网