题目内容
如图,能判定EB∥AC的条件是( )
A. ∠C=∠ABE B. ∠A=∠EBD C. ∠C=∠ABC D. ∠A=∠ABE
为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
已知是二元一次方程组的解,则a-b的值为( )
A. -1 B. 1 C. 2 D. 3
如图,计划把河水引到水池A中,先引AB⊥CD,垂足为B,然后 沿AB开渠,能使所开的渠道最短, 这样设计的依据是_______________.
在同一平面内,不重合的两条直线的位置关系是( ).
A. 平行 B. 相交 C. 平行或相交 D. 平行、相交或垂直
如图,在中,,,,⊙与、、都相切,切点分别是、、,、的延长线交于点,、是关于的方程的两个根.
(1)求证:是直角三角形;
(2)若,求四边形CEDF的面积.
如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t<时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.
二次函数在的范围内有最小值,则的值是( )
A. B. C. D.