题目内容
若一个几何体的主视图、左视图、俯视图是直径相等的圆,则这个几何体是( )
A. 正方体 B. 圆锥 C. 圆柱 D. 球
如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.
2017年A、B两地动车首发成功,已知两地铁路长为450千米,动车比火车每小时多行驶50千米,从A地乘动车比乘火车少用40分钟,设动车速度为每小时x千米,则可列方程为( )
A. - =40 B. - =40
C. -= D. -=
已知一组从小到大排列的数据: 1,,,2,6,10的平均数与中位数都是5,则这组数据的众数是______________.
如图,已知AB是⊙O的直径,⊙O的切线CD与AB的延长线交于点D,点C为切点,联接AC,若∠A=26°,则∠D的度数是( )
A. 26° B. 38° C. 42° D. 64°
已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.
(1)用含x的代数式表示线段CF的长;
(2)如果把△CAE的周长记作C△CAE,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;
(3)当∠ABE的正切值是时,求AB的长.
为了做好防控H1N1甲型流感工作,我县卫生局准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某乡镇预防H1N1甲型流感工作.
(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.
(2)求恰好选中医生甲和护士A的概率.
如图,在△ABC 中,AB=AC,AE 是∠BAC 的平分线,∠ABC 的平分线 BM 交 AE 于点 M,点 O在 AB 上,以点O 为圆心,OB 的长为半径的圆经过点 M,交 BC 于点G,交 AB 于点 F.
(1)求证:AE 为⊙O 的切线.
(2)当 BC=8,AC=12 时,求⊙O 的半径.
(3)在(2)的条件下,求线段 BG 的长.
如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:BD=2:1,点F在AC上,AF:FC=1:2,联结BF,交DE于点G,那么DG:GE等于( )
A. 1:2 B. 1:3 C. 2:3 D. 2:5.