题目内容
【题目】已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.
(1)如图①,若∠P=35°,求∠ABP的度数;
(2)如图②,若直线CD是⊙O的切线,求证:D为AP的中点.
【答案】(1)55°(2)见解析
【解析】
(1)易证PA⊥AB,再通过解直角三角形求解;
(2)连接OC、AC,证出OC⊥CD,AB⊥AP,根据半径所对应的角相等即可证明CD= AD;根据AB是O的直径,得出∠BCA=90°,再根据两个角相加为90°,即可证明CD= DP,从而得出结论
(1)∵AB是⊙O的直径,AP是⊙O的切线
∴PA⊥AB
∴∠BAP=90°
∵∠P=35°
∴∠ABP=∠BAP-∠P=90°-35°=55°
故答案为:55°
(2)如图,连接OC、AC
∵CD是⊙O的切线
∴OC⊥CD
∴∠1+∠3=90°
∵AP是⊙O的切线
∴AB⊥AP
∴∠2+∠4=90°
∵OA= OC
∴∠1=∠2
∴∠3=∠4
∴ CD= AD
∵AB是O的直径,
∴∠BCA=90°
∴∠DCP+∠3=90°
∠CPA+∠4=90°
∴∠DCP=∠CPA
∴CD= DP
∴CD= DP=AD
∴D为AP的中点
练习册系列答案
相关题目