题目内容
如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D、C.若∠CAB=30°,CD=2,则阴影部分面积是( )
A. B. C. ﹣ D. ﹣
下列各运算中,计算不正确的是( )
A. ×= B. =-5
C. 2+3=5 D. =
某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等级(A,B,C,D分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题;
(1)本次调查中,一共抽取了 名学生的成绩;
(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比 .
(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是 分,众数是 分.
(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.
已知反比例函数(k为常数,k≠1).
(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.
已知一个布袋里装有2个红球,3个白球和1个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为_______.
某组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16.则这组数据的众数和中位数分别是( )
A. 12,13 B. 12,14 C. 13,14 D. 13,16
如图,平行四边形ABCD中,AB=4,BC=2.若把它放在平面直角坐标系中,使AB在x轴上,点C在y轴上,如果点A的坐标为(-3,0),求点B,C,D的坐标.
已知抛物线l:y=(x﹣h)2﹣4(h为常数)
(1)如图1,当抛物线l恰好经过点P(1,﹣4)时,l与x轴从左到右的交点为A、B,与y轴交于点C.
①求l的解析式,并写出l的对称轴及顶点坐标.
②在l上是否存在点D,使S△ABD=S△ABC , 若存在,请求出D点坐标,若不存在,请说明理由.
③点M是l上任意一点,过点M做ME垂直y轴于点E,交直线BC于点D,过点D作x轴的垂线,垂足为F,连接EF,当线段EF的长度最短时,求出点M的坐标.
(2)设l与双曲线y=有个交点横坐标为x0,且满足3≤x0≤5,通过l位置随h变化的过程,直接写出h的取值范围.
下列哪一个是假命题( )
A. 五边形外角和为360°
B. 切线垂直于经过切点的半径
C. (3,﹣2)关于y轴的对称点为(﹣3,2)
D. 抛物线y=x2﹣4x+2017对称轴为直线x=2