题目内容

【题目】如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.

(1)求证:△ADE≌△CBF
(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.

【答案】
(1)

证明:∵四边形ABCD是平行四边形,

∴AD=BC,AB=CD,∠A=∠C,

∵E、F分别为边AB、CD的中点,

∴AE=AB,CF=CD,

∴AE=CF,

在△ADE和△CBF中,

∴△ADE≌△CBF(SAS);


(2)

解:

若∠ADB是直角,则四边形BEDF是菱形,理由如下:

解:由(1)可得BE=DF,

又∵AB∥CD,

∴BE∥DF,BE=DF,

∴四边形BEDF是平行四边形,

连接EF,在ABCD中,E、F分别为边AB、CD的中点,

∴DF∥AE,DF=AE,

∴四边形AEFD是平行四边形,

∴EF∥AD,

∵∠ADB是直角,

∴AD⊥BD,

∴EF⊥BD,

又∵四边形BFDE是平行四边形,

∴四边形BFDE是菱形.


【解析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;
(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根据菱形的判定可以得到四边形是菱形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网