题目内容
【题目】如图,在△ABC的边AB,AC的外侧分别作等边△ABD和等边△ACE,连接DC,BE.
(1)求证:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于点B,请求出△ABC的面积.
【答案】(1)见解析(2)3
【解析】
⑴根据等边三角形的性质得AB=AD,AE=AC, ∠BAD=∠BDA=∠DBA=∠CAE=60°,求出∠BAE=∠DAC,根据SAS证得 △ABE≌△ADC,得到DC=BE.
⑵过点A作AH⊥BC于H ,BD⊥BC,得到∠ACB=90°-∠ABD=90°-60°=30°
2AH=AB,得出AH,BC已知,根据三角形面积即可求出.
(1)证明: ∵等边△ABD和等边△ACE
∴AD=AB,AE=AC,∠DAB=∠EAC=60°
∴∠DAC=∠EAB
∴△DAC ≌△BAE
∴DC=BE
(2) 过点A作AH⊥BC于H
∵BD⊥BC
∴∠DBC=90°
∵等边△ABD
∴∠DBA=60° ,AB=BD=3
∴∠ABC=30°
∵AH⊥BC
∴AH= =
∴△ABC的面积=
练习册系列答案
相关题目