题目内容
已知直线l:y=kx+1与抛物线y=x2-4x
(1)求证:直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=-2时,求△OAB的面积.
两个数的和一定大于这两数的差.________.(判断对错)
已知⊙O的半径为5,EF是长为8的弦,OG⊥EF于点G,点A在GO的延长线上,且AO=13.弦EF从图1的位置开始绕点O逆时针旋转,在旋转过程中始终保持OG⊥EF,如图2.
[发现]在旋转过程中,
(1)AG的最小值是 ,最大值是 .
(2)当EF∥AO时,旋转角α= .
[探究]若EF绕点O逆时针旋转120°,如图3,求AG的长.
[拓展]如图4,当AE切⊙O于点E,AG交EO于点C,GH⊥AE于H.
(1)求AE的长.
(2)此时EH= ,EC= .
如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为【 】
A. 30° B. 45° C .60° D.90°
已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是( )
A. 点P在圆内 B. 点P在圆上
C. 点P在圆外 D. 不能确定
△ABC是等边三角形,点O是三条高的交点.若△ABC以点O为旋转中心旋转后能与原来的图形重合,则△ABC旋转的最小角度是____________.
在平面直角坐标系中,A点坐标为(3,4),将线段OA绕原点O逆时针旋转90°得到线段OA′,则点A′的坐标是( )
A. (﹣4,3) B. (﹣3,4)
C. (3,﹣4) D. (4,﹣3)
计算:
(1)-4a-(a-2); (2)3(2x2-y2)-2(3y2-2x2).
下列各数中,不是负数的是( )
A. -2 B. 3 C. - D. -0.10