题目内容

【题目】如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,

(1)求证:△ABC是等边三角形;

(2)求圆心O到BC的距离OD.

【答案】(1)证明见解析(2)4

【解析】解:(1)证明:∵∠APC和∠ABC是同弧所对的圆周角,∴∠APC=∠ABC。

又∵在△ABC中,∠BAC=∠APC=60°,∴∠ABC=60°。

∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°。

∴△ABC是等边三角形。

(2)连接OB,

∵△ABC为等边三角形,⊙O为其外接圆,

∴O为△ABC的外心。

∴BO平分∠ABC。∴∠OBD=30°.∴OD=8×=4。

(1)根据同弧所对的圆周角相等的性质和已知∠BAC=∠APC=60°可得△ABC的每一个内角都等于600,从而得证。

(2)根据等边三角形三线合一的性质,得含30度角直角三角形OBD,从而根据30度角所对边是斜边一半的性质,得OD=8×=4

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网