题目内容

若圆内接正三角形的边长为2,则圆的半径为
 
分析:画图,利用正三角形的性质找到由内切圆半径,外接圆半径和边长的一半所组成的三角形(如△OBD),然后进行计算可求出外接圆半径.
解答:精英家教网解:如图,△ABC是⊙O的边长为2的内接正三角形.
连OB,OA,
∵△ABC是正三角形,
∴AO垂直平分BC,设垂足为D.
∴BD=1;
又∵∠OBD=30°,
∴OD=
1
3
,则OB=
2
3
=
3
3

故填
3
3
点评:熟悉正三角形的性质.它的内心,外心等是重合的.记住含30度的直角三角形三边之间的数量关系(1:
3
:2)以及正三角形的内切圆半径,外接圆半径和它的高的比(1:2:3).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网