题目内容
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0)其部分图象如图所示,下列结论:①b2﹣4ac<0;②方程ax2+bx+c的两个根是x1=﹣1,x2=3; ③2a+b=0,④当y>0时,x的取值范围是﹣1<x<3:⑤当x>0,y随x增大而减小,其中结论正确的序号是_____.
【答案】②③④
【解析】
根据二次函数的图象与性质即可求出答案.
解:①由图象可知:抛物线与x轴有两个交点,
∴△=b2﹣4ac>0,故①错误;
②(﹣1,0)关于直线x=1的对称点为(3,0),
∴ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;
③对称轴为x=1,
故 =1,
∴2a+b=0,故③正确;
④当y>0时,由图象可知:﹣1<x<3,故④正确;
⑤当x>1时,y随着x的增大而减小,故⑤错误;
故答案为:②③④.
练习册系列答案
相关题目
【题目】小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲种产品数(件) | 生产乙种产品数(件) | 所用时间(分钟) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元;
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元.请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?