题目内容

(2012•邵阳)如图所示,在Rt△ABC中,∠ACB=90°,∠B=30°,ED是BC的垂直平分线,请写出图中两条相等的线段是
BD=CD(答案不唯一)
BD=CD(答案不唯一)
分析:由ED是BC的垂直平分线,可得BE=CE,BD=CD,又由在Rt△ABC中,∠ACB=90°,∠B=30°,易证得△AEC是等边三角形,即可得AE=EC=AC=BE.
解答:解:∵ED是BC的垂直平分线,
∴BE=CE,BD=CD,
∵在Rt△ABC中,∠ACB=90°,∠B=30°,
∴∠ECB=∠B=30°,∠A=90°-∠B=60°,
∴∠ACE=90°-30°=60°,
∴△AEC是等边三角形,
∴AE=EC=AC,
∴AE=AC=EC=BE.
∴图中两条相等的线段是:BE=CE=AC=BE或BD=CD.
故答案为:此题答案不唯一,如BD=CD等.
点评:此题考查了线段垂直平分线的性质、等边三角形的判定与性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网