题目内容

如图:已知MNPQ,同旁内角的平分线AB、CD和AD、CD分别相交于点.
(1)猜想AC和BD间的关系是什么?
(2)试用理由说明你的猜想.(本题将按正确结论的难易程度给分)
精英家教网
(1)答:AC与BD互相平分,且AC=BD,

精英家教网


(2)证明:∵MNPQ,
∴∠MAC=∠ACQ、∠ACP=∠NAC,
∵AB、CD分别平分∠MAC和∠ACQ,
∴∠BAC=
1
2
∠MAC、∠DCA=
1
2
∠ACQ,
又∵∠MAC=∠ACQ,∴∠BAC=∠DCA,
∴ABCD,
∵AD、CB分别平分∠ACP和∠NAC,
∴∠BCA=
1
2
∠ACP、∠DAC=
1
2
∠NAC,
精英家教网

又∵∠ACP=∠NAC,
∴∠BCA=∠DAC,
∴ADCB,
又∵ABCD,
∴四边形ABCD平行四边形,
∵∠BAC=
1
2
∠MAC,∠ACB=
1
2
∠ACP,
又∵∠MAC+∠ACP=180°,
∴∠BAC+∠ACP=90°,
∴∠ABC=90°,
∴平行四边形ABCD是矩形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网