题目内容
(1)计算| 3 |
| x |
| 6 |
| 1-x |
| x+5 |
| x2-x |
(2)解分式方程
| 1 |
| x-1 |
| 2x |
| x+1 |
分析:本题考查解分式方程的能力,观察方程(1)可得最简公分母是:x(x-1),(2)可得最简公分母是:(x+1)(x-1),两边同时乘最简公分母可把分式方程化为整式方程来解答.
解答:(1)解:原式=
+
-
=
+
-
=
=
=
(4分)
(2)解:方程两边同乘(x-1)(x+1),得(x+1)+2x(x-1)=2(x-1)(x+1)
解得x=3.(3分)
检验:x=3时,(x+1)(x-1)≠0,
∴x=3是原分式方程的解.(4分)
| 3 |
| x |
| 6 |
| x-1 |
| x+5 |
| x(x-1) |
=
| 3(x-1) |
| x(x-1) |
| 6x |
| x(x-1) |
| x+5 |
| x(x-1) |
=
| 3x-3+6x-x-5 |
| x(x-1) |
| 8x-8 |
| x(x-1) |
| 8 |
| x |
(2)解:方程两边同乘(x-1)(x+1),得(x+1)+2x(x-1)=2(x-1)(x+1)
解得x=3.(3分)
检验:x=3时,(x+1)(x-1)≠0,
∴x=3是原分式方程的解.(4分)
点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
(2)解分式方程一定注意要验根.
练习册系列答案
相关题目