题目内容
【题目】如图,中,,,,若动点P从点C开始,按的路径运动,且速度为每秒1cm,设出发的时间为t秒.
出发2秒后,求的面积;
当t为几秒时,BP平分;
问t为何值时,为等腰三角形?
【答案】(1)18;(2)当秒时,BP平分;(3)或13s或12s或时为等腰三角形.
【解析】
(1)利用勾股定理得出AC=8cm,进而表示出AP的长,进而得出答案;
(2)过点P作PD⊥AB于点D,由HL证明Rt△BPD≌Rt△BPC,得出BD=BC=6cm,因此AD=10﹣6=4cm,设PC=x cm,则PA=(8﹣x)cm,由勾股定理得出方程,解方程即可;
(3)利用分类讨论的思想和等腰三角形的特点及三角形的面积求出答案.
(1)如图1.
∵∠C=90°,AB=10cm,BC=6cm,∴AC=8cm,根据题意可得:PC=2cm,则AP=6cm,故△ABP的面积为:×AP×BC=×6×6=18(cm2);
(2)如图2所示,过点P作PD⊥AB于点D.
∵BP平分∠CBA,∴PD=PC.
在Rt△BPD与Rt△BPC中,,∴Rt△BPD≌Rt△BPC(HL),∴BD=BC=6 cm,∴AD=10﹣6=4 cm.
设PC=x cm,则PA=(8﹣x)cm
在Rt△APD中,PD2+AD2=PA2,即x2+42=(8﹣x)2,解得:x=3,∴当t=3秒时,BP平分∠CBA;
(3)如图3,若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;
若P在AB边上时,有3种情况:
①如图4,若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;
②如图5,若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;
③如图
∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC,∴PA=PB=5cm
∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.
综上所述:当t=6s或13s或12s或 10.8s 时△BCP为等腰三角形.