题目内容
若正多边形的一个外角是,则该正多边形的内角和为
A. B. C. D.
问题情境:小明和小丽共同探究一道数学题:如图①,在△ABC中,点D是边BC的中点,∠BAD = 65°,∠DAC = 50°,AD = 2,求AC的长为多少.
探索发现;
小明的思路是:延长AD至点E,使DE = AD,构造全等三角形.
小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.
选择小明、小丽其中一人的方法解决问题情境中的问题.
类比应用:如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,AB⊥AC.若∠CAD=45°,∠ADC = 67.5°,AO = 2,则BC的长为___________.
不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.
已知:直线及直线外一点.
求作:,使得.
作法:如图,
①在直线上取一点,作射线,以点为圆心,长为半径画弧,交的延长线于点;
②在直线上取一点(不与点重合),作射线,以点为圆心,长为半径画弧,交的延长线于点;
③作直线.
所以直线就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵_______,_______,
∴(____________)(填推理的依据).
若在实数范围内有意义,则实数的取值范围是_______.
如图1,某人用一张面积为S的三角形纸片ABC剪出一个△EFP,记△EFP的面积为T,已知E、F、P分别是△ABC三边上的三点,且EF∥BC.
(1)如图2,当P与B重合,设分别等于、、时,△PEF的面积分别为、、.
① = ,= ,= ;
② 写出的求解过程;
(2)如图3,当点P是△ABC边BC上的任意一点时(点P可与B或C重合),设, 试求出与、S的函数关系式;
(3)请探究T是否存在最大值,若存在,请求出这个最大值;若不存在,请说明理由.
张老师想给李老师打电话,但忘了电话号码中的最后两个数字,只记得号码是:135767873 ○ □ (○,□表示忘记的最后两个数字).张老师还记得○与□都是小于5的偶数.
(1)用列举法表示○□所有的可能情况;
(2)若后两位数字相同,张老师一次拔对李老师电话号码的概率是多少?
已知:如图,在△ABC中,AB=AC,AD是△ABC的一条角平分线,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.
(1)求证:四边形ADCE为矩形;
(2)连接DE,交AC于点F,请判断四边形ABDE的形状,并证明;
(3)线段DF与AB有怎样的关系?请直接写出你的结论.
我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的( )
A. (+39)﹣(﹣7) B. (+39)+(+7) C. (+39)+(﹣7) D. (+39)﹣(+7)