题目内容
矩形、菱形、正方形都具有的性质是( )
A. 对角线相等 B. 对角线互相垂直 C. 对角线互相平分 D. 对角线平分对角
等腰三角形两边长分别为3和7,那么它的周长为( )
A. 10 B. 13 C. 17 D. 13或17
“激情同在”第23届冬奥会于2018年2月在韩国平昌郡举行,场馆的建筑面积约是358 000平方米,将358 000用科学记数法表示为_____.
一次函数分别交x轴、y轴于点A、B,画图并求线段AB的长.
在平面直角坐标系中,点P的坐标为(a,b),点P的“变换点”P`的坐标定义如下:当时,P`点坐标为(a,-b);当时,P`点坐标为(b,-a)。线段l:上所有点按上述“变换点”组成一个新的图形,若直线与组成的新的图形有两个交点,则k的取值范围是( )
A. B. 或 C. D.
如图①,已知线段AC∥y轴,点B在第一象限,且AO平分∠BAC,AB交y轴于G,连接OB,OC.
(1)判断△AOG的形状,并予以证明;
(2)若点B,C关于y轴对称,求证:AO⊥BO;
(3)在(2)的条件下,如图②,点M为OA上一点,且∠ACM=45°,BM交y轴于P,若点B的坐标为(3,1),求点M的坐标.
如图,AD为△ABC的中线,BE为△ABD的中线.
(1)用圆规和无刻度的直尺在△BED中作BD边上的高EF;
(2)若△ABC的面积为40,BD=5,求EF的长.
问题呈现
如图1,在边长为1的正方形网格中,连接格点、和、,与相交于点,求的值.
方法归纳
求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点、,可得,则,连接,那么就变换到中.
问题解决
(1)直接写出图1中的值为_________;
(2)如图2,在边长为1的正方形网格中,与相交于点,求的值;
思维拓展
(3)如图3,,,点在上,且,延长到,使,连接交的延长线于点,用上述方法构造网格求的度数.
如图,将一条两边互相平行的纸带按图折叠,则∠α 的度数等于( )
A. 50° B. 60° C. 75° D. 85°