题目内容
如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
计算:2﹣1﹣3tan30°+(﹣1)0++cos60°.
已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,
(1)如图1,求证:PQ=PE;
(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=3,求∠C的度数;
(3)如图3,在(2)的条件下,PD=6,连接QC交BC于点M,求QM的长.
(题文)如图,在平面直角坐标系中,矩形OABC的顶点A(6,0),C(0,2),过y轴上的点D(0,3),作射线DM与x轴平行,点P,Q分别是射线DM与x轴正半轴上的动点,满足∠PQO=60°.设点P的横坐标为x(0≤x≤9),△OPQ与矩形的重叠部分的面积为y,则能大致反映y与x函数关系的图象是( )
A. B. C. D.
下列计算正确的是( )
A. a2•a3=a6 B. a6÷a3=a2 C. (﹣2a2)3=﹣8a6 D. 4a3﹣3a2=1
如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.
如图,在中,,,,动点从点开始沿向点以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是( )
一块等边三角形木板,边长为1,现将木板沿水平线翻滚,如图所示,若翻滚了20次.则B点所经过的路径长度为________.
(8分)某车间有60名工人,生产一种螺栓和螺帽,平均每人每小时生产螺栓15个或螺帽10个,应分配多少人生产螺栓和螺帽,才能刚好配套?(每个螺栓配两个螺帽)