题目内容
如图,已知矩形ABCD,则下列结论一定正确的是( )
A. ∠CAD=∠CAB B. OA=OD C. OA=AB D. AC所在直线为对称轴
定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD即为线段BD的“对角线正方形”.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB以5cm/s的速度运动,当点P与点B不重合时,作线段PB的“对角线正方形”,设点P的运动时间为t(s),线段PB的“对角线正方形”的面积为S(cm2).
(1)如图③,借助虚线的小正方形网格,画出线段AB的“对角线正方形”.
(2)当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,求t的值.
(3)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式.
(4)在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠A的平分线上时,直接写出t的值.
二次函数的图象与反比例函数的图象相交(如图),则不等式>的解集是( )
A. -2<x<0或 1<x<4 B. x<-2或1<x<4 C. -2<x<0或0<x<1或x>4 D. -2<x<1或x>-4
计算:(﹣1)0+()﹣1﹣.
已知A,B两地相距4千米,上午8:00时,甲从A地步行到B地,8:20时乙从B地出发骑自行车到A地,甲、乙两人离A地的距离y(千米)与甲所用的时间x(分)之间的关系如图所示,则下列说法错误的是 ( )
A. 两人于8:30在途中相遇 B. 乙8:45到达A地
C. 甲步行的速度是4千米/时 D. 乙骑车的速度是千米/分
在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于点A,B(A在B的左侧),抛物线的对称轴为直线x=1,AB=4.
(1)求抛物线的表达式;
(2)抛物线上有两点M(x1,y1)和N(x2,y2),若x1<1,x2>1,x1+x2>2,试判断y1与y2的大小,并说明理由;
(3)平移该抛物线,使平移后的抛物线经过点O,且与x轴交于点D,记平移后的抛物线顶点为点P
①若△ODP是等腰直角三角形,求点P的坐标;
②在①的条件下,直线x=m(0<m<3)分别交线段BP、BC于点E、F,且△BEF的面积:△BPC的面积=2:3,直接写出m的值.
在如图所示的网格中,每个小正方形的边长都为1,点A、B、C均为格点.
(Ⅰ)△ABC的面积等于_____.
(Ⅱ)请借助无刻度的直尺,在如图所示的网格中画出△ABC的角平分线BD的垂直平分线,并简要说明你是怎么画出来的:_____.
计算﹣3+10=( )
A. ﹣30 B. ﹣13 C. ﹣7 D. 7
如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1) C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)