题目内容
是否存在这样的非负整数m,使关于x的一元二次方程m2x2-(2m-1)x+1=0有两个实数根?若存在,请求出m的值;若不存在,请说明理由.
解:不存在
由题意可得:m2≠0;
故m≠0,
又△=[-(2m-1)]2-4m2≥0,
解得:m≤;
而要求m为非负整数,
故这样的m不存在.
分析:根据题意,要使m2x2-(2m-1)x+1=0有两个实数根,必有△=[-(2m-1)]2-4m2≥0;解出m的值,并判断其解集中是否存在符合题意的非负整数,即可得出答案.
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
由题意可得:m2≠0;
故m≠0,
又△=[-(2m-1)]2-4m2≥0,
解得:m≤;
而要求m为非负整数,
故这样的m不存在.
分析:根据题意,要使m2x2-(2m-1)x+1=0有两个实数根,必有△=[-(2m-1)]2-4m2≥0;解出m的值,并判断其解集中是否存在符合题意的非负整数,即可得出答案.
点评:总结:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
练习册系列答案
相关题目