题目内容
【题目】如图,△ABC为等边三角形,点D,E分别在AC,BC上,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若PF=3,则BP=( )
A. 6 B. 5 C. 4 D. 3
【答案】A
【解析】
首先证明△BAD≌△ACE,从而可得到∠CAE=∠ABD,然后依据三角形的外角的性质可得到∠BPF=60°,最后在Rt△BPF中,依据含30°角的直角三角的性质求解即可.
解:∵△ABC为等边三角形,
∴AB=AC,∠BAD=∠ACE=60°.
在△BAD和△ACE中
,
∴△BAD≌△ACE.
∴∠CAE=∠ABD.
∴∠BPF=∠ABP+∠BAP=∠BAP+∠EAC=∠BAC=60°.
∴在Rt△BPF中,∠PBF=90°-60°=30°.
∴BP=2PF=6.
故选:A.
练习册系列答案
相关题目