题目内容
若由你选择一个喜欢的数值m,使一次函数的图象经过第一、二、四象限,则m的值可以是___________.
如图,延长矩形的边至点,使,连接,如果,则的值是( )
A. 18° B. 19° C. 20° D. 40°
请写出一个过点(0,1),且y随着x的增大而减小的一次函数解析式_____.
如图,在△ABC中,∠C=90°,AC=4,BC=3.点E从点A出发,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点E不与△ABC的顶点重合时,过点E作其所在直角边的垂线交AB于点F,将△AEF绕点F沿逆时针方向旋转得到△NMF,使点A的对应点N落在射线FE上.设点E的运动时间为t(秒).
(1)用含t的代数式表示线段CE的长.
(2)求点M落到边BC上时t的值.
(3)当点E在边AC上运动时,设△NMF与△ABC重叠部分图形为四边形时,四边形的面积为S(平方单位),求S与t之间的函数关系式.
有3个完全相同的小球,把它们分别标号为2,3,6,放在一个不透明的口袋中.从口袋中随机摸出两个小球.用画树状图(或列表)的方法,求摸出的两个小球均能被3整除的概率.
如图,AB是⊙O的直径,点C在⊙O上,P是线段OB上的任意一点.若∠CAB=40°,则∠APC的大小不可能为( )
A. 100° B. 90° C. 50 D. 40°
如图所示,抛物线y=﹣x﹣4与x轴交于点A、B,与y 轴相交于点C.
(1)求直线BC的解析式;
(2)将直线BC向上平移后经过点A得到直线l:y=mx+n,点D在直线l上,若以A、B、C、D为顶点的四边形是平行四边形,求出点D的坐标.
某校为调查1000名学生对新闻、娱乐、动画、体育四类电视节目的喜爱情况,随机抽取了部分学生进行调查,并利用调查数据作出如图所示的扇形统计图.根据图中信息,可以估算出该校喜爱体育节目的学生共有( )
A. 300名 B. 250名 C. 200名 D. 150名
计算:﹣12018+(π﹣5)0+4﹣3tan60°.