题目内容
如图,要判定△ABC与△AED相似,欲添加一个条件,下列可行的条件有
①AE:BE=AD:DC;②AE:AD=AC:AB;③AD:AC=DE:BC;④∠BED+∠C=180°;⑤∠BED=∠C.
- A.1个
- B.2个
- C.3个
- D.4个
C
分析:由∠A=∠A,得出要判定△ABC与△AED相似,根据有两边对应成比例,且夹角相等的两三角形相似得出只要具备条件=或=即可;或根据有两角对应相等的两三角形相似,判断即可.
解答:∵∠A=∠A,
∴要判定△ABC与△AED相似,根据有两边对应成比例,且夹角相等的两三角形相似得出只要具备条件=或=即可;
∵=,
∴=,
∴+1=+1,
∴=,
∴=,∴①正确;
∵=,
∴=,∴②正确;
∵=,∴③错误;
∵∠BED+∠C=180°,
∴∠B+∠EDC=360°-180°=180°,
∵∠ADE+∠EDC=180°,
∴∠B=∠ADE,
∵∠A=∠A,
∴△AED∽△ACB,∴④正确;
∵∠A=∠A,∠BED=∠C不能推出两三角形相似,∴⑤错误;
即正确的有①②④,共3个,
故选C.
点评:本题考查了相似三角形的判定定理的应用,注意:①有两边对应成比例,且夹角相等的两三角形相似,②有两角对应相等的两三角形相似.
分析:由∠A=∠A,得出要判定△ABC与△AED相似,根据有两边对应成比例,且夹角相等的两三角形相似得出只要具备条件=或=即可;或根据有两角对应相等的两三角形相似,判断即可.
解答:∵∠A=∠A,
∴要判定△ABC与△AED相似,根据有两边对应成比例,且夹角相等的两三角形相似得出只要具备条件=或=即可;
∵=,
∴=,
∴+1=+1,
∴=,
∴=,∴①正确;
∵=,
∴=,∴②正确;
∵=,∴③错误;
∵∠BED+∠C=180°,
∴∠B+∠EDC=360°-180°=180°,
∵∠ADE+∠EDC=180°,
∴∠B=∠ADE,
∵∠A=∠A,
∴△AED∽△ACB,∴④正确;
∵∠A=∠A,∠BED=∠C不能推出两三角形相似,∴⑤错误;
即正确的有①②④,共3个,
故选C.
点评:本题考查了相似三角形的判定定理的应用,注意:①有两边对应成比例,且夹角相等的两三角形相似,②有两角对应相等的两三角形相似.
练习册系列答案
相关题目