题目内容
五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A处沿直线飞到对面一房屋的顶部C处.从A处看房屋顶部C处的仰角为30°,看房屋底部D处的俯角为45°,石榴树与该房屋之间的水平距离为米,求出小鸟飞行的距离AC和房屋的高度CD.
【答案】分析:首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△ACE、△AED,应利用其等边DE=AE构造方程关系式,进而可解即可求出答案.
解答:解:作AE⊥CD于点E.
由题意可知:∠CAE=30°,∠EAD=45°,AE=米.
在Rt△ACE中,tan∠CAE=,即tan30°=.
∴CE==(米),
∴AC=2CE=2×3=6(米).
在Rt△AED中,∠ADE=90°-∠EAD=90°-45°=45°,
∴DE=AE=(米).
∴DC=CE+DE=(3+)米.
答:AC=6米,DC=(3+)米.
点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.
解答:解:作AE⊥CD于点E.
由题意可知:∠CAE=30°,∠EAD=45°,AE=米.
在Rt△ACE中,tan∠CAE=,即tan30°=.
∴CE==(米),
∴AC=2CE=2×3=6(米).
在Rt△AED中,∠ADE=90°-∠EAD=90°-45°=45°,
∴DE=AE=(米).
∴DC=CE+DE=(3+)米.
答:AC=6米,DC=(3+)米.
点评:本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.
练习册系列答案
相关题目