题目内容
等边三角形的边长为2,则该等边三角形的面积是
- A.
- B.2
- C.1
- D.
A
分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
解答:AB=2,∵等边三角形高线即中点,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴AD==,
∴等边△ABC的面积为BC•AD=×2×=,
故选 A.
点评:本题考查了勾股定理在直角三角形中的运用,考查了等边三角形面积的计算,本题中根据勾股定理计算AD的值是解题的关键.
分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.
解答:AB=2,∵等边三角形高线即中点,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴AD==,
∴等边△ABC的面积为BC•AD=×2×=,
故选 A.
点评:本题考查了勾股定理在直角三角形中的运用,考查了等边三角形面积的计算,本题中根据勾股定理计算AD的值是解题的关键.
练习册系列答案
相关题目
等边三角形的边长为2,则该三角形的面积为( )
A、4
| ||
B、2
| ||
C、
| ||
D、3 |
如果等边三角形的边长为a,那么它的内切圆半径为( )
A、
| ||||
B、
| ||||
C、
| ||||
D、
|