题目内容

如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为


  1. A.
    8
  2. B.
    8.8
  3. C.
    9.8
  4. D.
    10
C
分析:若AP+BP+CP最小,就是说当BP最小时,AP+BP+CP才最小,因为不论点P在AC上的那一点,AP+CP都等于AC.那么就需从B向AC作垂线段,交AC于P.先设AP=x,再利用勾股定理可得关于x的方程,解即可求x,在Rt△ABP中,利用勾股定理可求BP.那么AP+BP+CP的最小值可求.
解答:解:从B向AC作垂线段BP,交AC于P,
设AP=x,则CP=5-x,
在Rt△ABP中,BP2=AB2-AP2
在Rt△BCP中,BP2=BC2-CP2
∴AB2-AP2=BC2-CP2
∴52-x2=62-(5-x)2
解得x=1.4,
在Rt△ABP中,BP===4.8,
∴AP+BP+CP=AC+BP=5+4.8=9.8.
故选C.
点评:直线外一点与直线上各点连接的所有线段中,垂线段最短.因此先从B向AC作垂线段BP,交AB于P,再利用勾股定理解题即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网