题目内容
【题目】已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:ACAD=ABAE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.
【答案】
(1)证明:连接DE,
∵AE是直径,
∴∠ADE=90°,
∴∠ADE=∠ABC,
∵∠DAE=∠BAC,
∴△ADE∽△ABC,
∴ = ,
∴ACAD=ABAE;
(2)解:连接OD,
∵BD是⊙O的切线,
∴OD⊥BD,
在RT△OBD中,OE=BE=OD,
∴OB=2OD,
∴∠OBD=30°,
同理∠BAC=30°,
在RT△ABC中,AC=2BC=2×2=4.
【解析】(1)连接DE,根据圆周角定理求得∠ADE=90°,得出∠ADE=∠ABC,进而证得△ADE∽△ABC,根据相似三角形对应边成比例即可求得结论;(2)连接OD,根据切线的性质求得OD⊥BD,在RT△OBD中,根据已知求得∠OBD=30°,进而求得∠BAC=30°,根据30°的直角三角形的性质即可求得AC的长.
练习册系列答案
相关题目