题目内容
你认为方程x2+2x-3=0的解应该是
- A.1
- B.-3
- C.3
- D.1或-3
D
分析:利用因式分解法,原方程可变为(x+3)(x-1)=0,即可得x+3=0或x-1=0,继而求得答案.
解答:∵x2+2x-3=0,
∴(x+3)(x-1)=0,
即x+3=0或x-1=0,
解得:x1=-3,x2=1.
故选D.
点评:此题考查了因式分解法解一元二次方程的知识.此题比较简单,注意掌握十字相乘法分解因式的知识是解此题的关键.
分析:利用因式分解法,原方程可变为(x+3)(x-1)=0,即可得x+3=0或x-1=0,继而求得答案.
解答:∵x2+2x-3=0,
∴(x+3)(x-1)=0,
即x+3=0或x-1=0,
解得:x1=-3,x2=1.
故选D.
点评:此题考查了因式分解法解一元二次方程的知识.此题比较简单,注意掌握十字相乘法分解因式的知识是解此题的关键.
练习册系列答案
相关题目
你认为方程x2+2x-3=0的解应该是( )
A.1 | B.-3 | C.3 | D.1或-3 |