题目内容

精英家教网如图,已知⊙O的弦CD垂直于直径AB,点E在CD上,且EC=EB.
(1)求证:△CEB∽△CBD;
(2)若CE=3,CB=5,求DE的长.
分析:(1)根据有两组角对应相等的两个三角形相似来判定其相似;
(2)根据相似三角形的对应边成比例先求出CD的长,已知CE的长,那么DE的长就容易求得了.
解答:(1)证明:∵弦CD垂直于直径AB,
∴BC=BD.
∴∠C=∠D.
又∵EC=EB,
∴∠C=∠CBE.
∴∠D=∠CBE.
又∵∠C=∠C,
∴△CEB∽△CBD.

(2)解:∵△CEB∽△CBD,
CE
CB
=
CB
CD

∴CD=
CB2
CE
=
52
3
=
25
3

∴DE=CD-CE=
25
3
-3=
16
3
点评:考查了相似三角形的判定和性质,难易程度适中.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网