题目内容
把-1,+2,-3,+4,-5,+6,-7,+8,-9填入下面的方框内,使得每行.每列.每条对角线上的三个数都满足:
(1)三数乘积都是负数;
(2)三数绝对值的和都相等.
用代数式表示比a的2倍大3的数是_________.
如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A、B两点,连接AP并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F ,且DC=FC,点D的坐标为(12,-2).
(1)判断⊙P与x轴的位置关系,并说明理由;
(2)求⊙P半径;
(3)若弧BD上有一动点M,连接AM,过B点作BN⊥AM,垂足为N,连DN,则DN的最小值是 .
如图,⊙O是△ABC的外接圆,∠OCB=30°,则∠A的度数等于____.
若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(-4,3),则点P与⊙O的位置关系是( )
A.点P在⊙O外 B.点P在⊙O内
C.点P在⊙O上 D.点P在⊙O外或⊙O上
计算(-2)×(-3)×(-1)的结果是( )
A. -6 B. -5 C. -8 D. 5
计算:(-60)×(+)=________.
计算:________,________.
概念学习
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,例如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把 (a≠0)记作 a,读作“a的圈n次方”.
初步探究
(1)直接写出计算结果:2③=________,=________;
(2)关于除方,下列说法错误的是________
A.任何非零数的圈2次方都等于1; B.对于任何正整数n,1=1;
C.3④=4③ ; D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
深入思考
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(﹣3)④=________;5⑥=________;=________.
(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于________;
(3)算一算:24÷23+(-16)×2④.