题目内容
某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)之间的函数关系式;
(2)若商场要想每天获得最大销售利润,每件商品的售价定为什么最合适?最大销售利润是多少?
【答案】分析:(1)此题可以按等量关系“每天的销售利润=(销售价-进价)×每天的销售量”列出函数关系式,并由售价大于进价,且销售量大于零求得自变量的取值范围.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
解答:解:(1)由题意得,每件商品的销售利润为(x-30)元,那么m件的销售利润为y=m(x-30),
又∵m=162-3x,
∴y=(x-30)(162-3x),
即y=-3x2+252x-4860,
∵x-30≥0,
∴x≥30.
又∵m≥0,
∴162-3x≥0,即x≤54.
∴30≤x≤54.
∴所求关系式为y=-3x2+252x-4860(30≤x≤54).
(2)由(1)得y=-3x2+252x-4860=-3(x-42)2+432,
所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
点评:本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价-进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
(2)根据(1)所得的函数关系式,利用配方法求二次函数的最值即可得出答案.
解答:解:(1)由题意得,每件商品的销售利润为(x-30)元,那么m件的销售利润为y=m(x-30),
又∵m=162-3x,
∴y=(x-30)(162-3x),
即y=-3x2+252x-4860,
∵x-30≥0,
∴x≥30.
又∵m≥0,
∴162-3x≥0,即x≤54.
∴30≤x≤54.
∴所求关系式为y=-3x2+252x-4860(30≤x≤54).
(2)由(1)得y=-3x2+252x-4860=-3(x-42)2+432,
所以可得售价定为42元时获得的利润最大,最大销售利润是432元.
点评:本题考查了二次函数在实际生活中的应用,解答本题的关键是根据等量关系:“每天的销售利润=(销售价-进价)×每天的销售量”列出函数关系式,另外要熟练掌握二次函数求最值的方法.
练习册系列答案
相关题目