题目内容

【题目】综合题
(1)如图①所示,P是等边△ABC内的一点,连接PA、PB、PC,将△BAP绕B点顺时针旋转60°得△BCQ,连接PQ.若PA2+PB2=PC2,证明∠PQC=90°;

(2)如图②所示,P是等腰直角△ABC(∠ABC=90°)内的一点,连接PA、PB、PC,将△BAP绕B点顺时针旋转90°得△BCQ,连接PQ.当PA、PB、PC满足什么条件时,∠PQC=90°?请说明.

【答案】
(1)证明:由旋转的性质知:BP=BQ、PA=QC,∠ABP=∠CBQ;
∵△ABC是等边三角形,
∴∠ABC=60°,即∠CBP+∠ABP=60°;
∵∠ABP=∠CBQ,
∴∠CBP+∠CBQ=60°,即∠PBQ=60°;
又∵BP=BQ,∴△BPQ是等边三角形;
∴BP=PQ;
∵PA2+PB2=PC2,即PQ2+QC2=PC2;
∴△PQC是直角三角形,且∠PQC=90°
(2)解:PA2+2PB2=PC2;理由如下:
同(1)可得:△PBQ是等腰直角三角形,则PQ= PB,即PQ2=2PB2
由旋转的性质知:PA=QC;
在△PQC中,若∠PQC=90°,则PQ2+QC2=PC2,即PA2+2PB2=PC2;
故当PA2+2PB2=PC2时,∠PQC=90°
【解析】(1)由旋转的性质知:BP=BQ、PA=QC,∠ABP=∠CBQ,再根据△ABC是等边三角形,可得∠ABC=60°,结合已知条件可证△BPQ是等边三角形,在△PQC中应用勾股定理的逆定理可得△PQC是直角三角形,且∠PQC=90°;(2)方法同(1)。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网