题目内容
阅读理解
九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.
请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.
问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.
解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.
由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把E(0,1.6),C(2,3)代入得解得
∴y=0.7x+1.6.
∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).
解决问题
请应用上述方法解决下列问题:
如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.
解:建立如图所示的直角坐标系,则线段AG可看作一个一次函数的图象.
由题意可得各点坐标为:点G(0,0),E(-4,1.6),BD=9且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把G(0,0),E(-4,1.6)代入得,
解得,
∴直线AE的函数关系式为y=-0.4x.
∴当x=-16时,y=-0.4×(-16)=6.4,
答:路灯杆AB的高度6.4m.
分析:根据题意写出一次函数的解析式,然后根据所求点的坐标代入解析式便可求得一次函数的解析式,然后便可求出AB的高度.
点评:本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,是各地中考的热点,同学们要加强训练,属于中档题.
由题意可得各点坐标为:点G(0,0),E(-4,1.6),BD=9且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把G(0,0),E(-4,1.6)代入得,
解得,
∴直线AE的函数关系式为y=-0.4x.
∴当x=-16时,y=-0.4×(-16)=6.4,
答:路灯杆AB的高度6.4m.
分析:根据题意写出一次函数的解析式,然后根据所求点的坐标代入解析式便可求得一次函数的解析式,然后便可求出AB的高度.
点评:本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,是各地中考的热点,同学们要加强训练,属于中档题.
练习册系列答案
相关题目
依据某校九年级一班在体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在85.5~90.5这一分数段的频数和频率分别是( )
A、4,0.1 | B、10,0.1 | C、10,0.2 | D、20,0.2 |