题目内容
【题目】如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
【答案】(1)m=2,(1,4);(2)(1,2).
【解析】试题分析:(1)首先把点B的坐标为(3,0)代入抛物线y=+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;
(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.
试题解析:(1)把点B的坐标为(3,0)代入抛物线y=+mx+3得:0=+3m+3,
解得:m=2,
∴y=+2x+3=,
∴顶点坐标为:(1,4).
(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,
设直线BC的解析式为:y=kx+b,
∵点C(0,3),点B(3,0),
∴,解得: ,
∴直线BC的解析式为:y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴当PA+PC的值最小时,点P的坐标为:(1,2).
练习册系列答案
相关题目