题目内容

探究题:
(1)观察下列各式:
1
1
3
=2
1
3
2
1
4
=3
1
4
3
1
5
=4
1
5

①猜想
4
1
6
的变形结果并验证;
②针对上述各式反映的规律,给出用n(n为任意自然数,且n≥1)表示的等式,并进行证明.
(2)把阅读下面的解题过程:
已知实数a、b满足a+b=8,ab=15,且a>b,试求a-b的值.
解:∵a+b=8,ab=15
∴(a+b)2=a2+2ab+b2=64
∴a2+b2=34
∴(a-b)2=a2-2ab+b2=34-30=4
∴a-b=
4
=2.
请你仿照上面的解题过程,解答下面的问题:已知实数x满足x+
1
x
=
8
,且x>
1
x
,试求x-
1
x
的值.
分析:(1)中,注意观察左边的被开方数是一个带分数,其分数部分的分子是1,分母比其整数部分大2.右边的结果根号外的比左边的整数部分大1,根号内的是左边的分数部分;
(2)中,显然根据:(a-b)2=(a+b)2-4ab.进行求值计算.
解答:解:(1)①猜想:
4
1
6
=5
1
6
,验证如下:
左边=
25
6
=5
1
6
=右边,等式成立;
②根据规律,可以表示为:
n+
1
n+2
=(n+1)
1
n+2
,验证如下:
左边=
n2+2n+1
n+2
=
(n+1)2
n+2
=(n+1)
1
n+2
=右边,等式成立;

(2)∵x+
1
x
=
8

∴(x-
1
x
2=(x+
1
x
2-4=8-4=4
又x>
1
x

∴x-
1
x
=2.
点评:特别注意:(x-
1
x
2=(x+
1
x
2-4.熟悉完全平方公式之间的联系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网