题目内容
计算:(﹣2)0++4cos30°﹣|﹣|.
“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 ;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
下列运算正确的是( )
A. a3﹣a2=a B. a2•a3=a6 C. a6÷a2=a3 D. (a2)3=a6
抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为( )
A. 向左平移1个单位 B. 向左平移2个单位
C. 向右平移1个单位 D. 向右平移2个单位
定义:如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“直观三角形”.
(1)抛物线y=x2的“直观三角形”是 .
A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形
(2)若抛物线y=ax2+2ax﹣3a的“直观三角形”是直角三角形,求a的值;
(3)如图,面积为12的矩形ABCO的对角线OB在x轴的正半轴上,AC与OB相交于点E,若△ABE是抛物线y=ax2+bx+c的“直观三角形”,求此抛物线的解析式.
若u、v满足v= ,则u2﹣uv+v2=__.
下图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为( )
A. 36° B. 42° C. 45° D. 48°
我国《道路交通安全法》第四十七条规定“机动车行经人行横道时,应当减速行驶;遇行人通过人行横道,应当停车让行”.如图:一辆汽车在一个十字路口遇到行人时刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?
如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A. 45° B. 50° C. 55° D. 60°