题目内容
已知:如图,B,F,C,D在同一条直线上,∠ACB=∠EFD,BF=CD,AC=EF.
求证:∠B=∠D.
如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB, △PBC, △PCD, △PDA,的面积分别为,,, ,以下判断: ① PA+PB+PC+PD的最小值为10;②若△PAB≌△PCD,则△PAD≌△PBC ;③若=,则=;④若△PAB∽△PDA,则PA=2.4.其中正确的是_____________(把所有正确的结论的序号都填在横线上)
(1)观察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,连接AD,把△ABD绕点A逆时针旋转90°,点D落在点E处,如图①所示,则线段CE和线段BD的数量关系是 ,位置关系是 .
(2)探究证明:
在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图②中画出图形,并证明你的判断.
(3)拓展延伸:
如图③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他条件不变,过点D作DF⊥AD交CE于点F,请直接写出线段CF长度的最大值.
某人打靶五次的环数如下:1,4,6,8,x,其中整数x是这组数据的中位数,那么这组数据的平均数是( )
A. 4.8 B. 4.8或5 C. 4.6或4.8 D. 4.6或4.8或5
某小区为了美化环境,计划分两次购进A,B两种花,第一次分别购进A,B两种花30棵和15棵,共花费675元;第二次以同样的单价分别购进A、B两种花12棵和5棵,第二次花费265元.
(1)求A、B两种花的单价分别是多少元?
(2)若购买A、B两种花共31棵,且B种花的数量不多于A种花的数量的2倍,请你给出一种费用最省的方案,并求出该方案所需费用.
如图,在⊙O中,半径OA垂直于弦BC,点D在⊙O上,若∠AOB=70°,则∠ADC的度数为( )
A. 30° B. 35° C. 45° D. 70°
关于x的一元二次方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是_____.
如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为( )
A. (11﹣2)米 B. (11﹣2)米 C. (11﹣2)米 D. (11﹣4)米
某宾馆准备购进一批换气扇,从电器商场了解到:一台A型换气扇和三台B型换气扇共需275元;三台A型换气扇和二台B型换气扇共需300元.
(1)求一台A型换气扇和一台B型换气扇的售价各是多少元;
(2)若该宾馆准备同时购进这两种型号的换气扇共80台,并且A型换气扇的数量不多于B型换气扇数量的3倍,请设计出最省钱的购买方案,并说明理由.