题目内容
【题目】已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1、x2是方程的两根,且(x1+x2)2﹣(x1+x2)﹣12=0,求m的值.
【答案】(1)m>-2 (2)m=1
【解析】
(1)若一元二次方程有两不等实数根,则根的判别式△=b2-4ac>0,建立关于m的不等式,求出m的取值范围.
(2)给出方程的两根,根据所给方程形式,可利用一元二次方程根与系数的关系得到x1+x2=2(m+1),代入
且(x1+x2)2-(x1+x2)-12=0,即可解答.
解:(1)∵方程有两个不相等的实数根,
∴△=b2﹣4ac=[﹣2(m+1)]2﹣4×1×(m2﹣3)=16+8m>0,
解得:m>﹣2;
(2)根据根与系数的关系可得:
x1+x2=2(m+1),
∵(x1+x2)2﹣(x1+x2)﹣12=0,
∴[2(m+1)]2﹣2(m+1)﹣12=0,
解得:m1=1或m2=﹣(舍去)
∵m>﹣2;
∴m=1.
练习册系列答案
相关题目