题目内容
【题目】某校初二数学兴趣小组活动时,碰到这样一道题:
“已知正方形AD,点E、F、G、H分别在边AB、BC、CD、DA上,若,则EG=FH”.
经过思考,大家给出了以下两个方案:
(甲)过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;
(乙)过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N;
(1)对小杰遇到的问题,请在甲、乙两个方案中任选一个,加以证明(如图1)
(2)如果把条件中的“”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图2),试求EG的长度.
【答案】(1) 证明见解析;(2).
【解析】
(1)无论选甲还是选乙都是通过构建全等三角形来求解.甲中,通过证△AMB≌△BNC来得出所求的结论.乙中,通过证△AMB≌△ADN来得出结论;
(2)按(1)的思路也要通过构建全等三角形来求解,可过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,将△AND绕点A旋转到△APB,不难得出△APM和△ANM全等,那么可得出PM=MN,而MB的长可在直角三角形ABM中根据AB和AM(即HF的长)求出.如果设DN=x,那么NM=PM=BM+x,MC=BC-BM=1-BM,因此可在直角三角形MNC中用勾股定理求出DN的长,进而可在直角三角形AND中求出AN即EG的长.
(1)选甲:证明:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N
∴AM=HF,BN=EG
∵正方形ABCD,
∴AB=BC,∠ABC=∠BCN=90°,
∵EG⊥FH
∴AM⊥BN
∴∠BAM+∠ABN=90°
∵∠CBN+∠ABN=90°
∴∠BAM=∠CBN
在△ABM和△CBN中,∠BAM=∠CBN,AB=BC,∠ABM=∠BCN
∴△ABM≌△CBN,
∴AM=BN
即EG=FH;
选乙:证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N
∴AM=HF,AN=EG
∵正方形ABCD,
∴AB=AD,∠BAD=∠ADN=90°,
∵EG⊥FH
∴∠NAM=90°
∴∠BAM=∠DAN
在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN
∴△ABM≌△ADN,
∴AM=AN
即EG=FH;
(2)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,
∵AB=1,AM=FH=
∴在Rt△ABM中,BM=
将△AND绕点A旋转到△APB,
∵EG与FH的夹角为45°,
∴∠MAN=45°,
∴∠DAN+∠MAB=45°,
即∠PAM=∠MAN=45°,
从而△APM≌△ANM,
∴PM=NM,
设DN=x,则NC=1-x,NM=PM=+x
在Rt△CMN中,(+x)2=+(1-x)2,
解得x=,
∴EG=AN=,
答:EG的长为.