题目内容
【题目】如图所示,A、D、E三点在同一直线上,,,于点D,于点E.
(1)求证:△BAD≌△ACE.
(2)判断BD、DE、CE之间的数量关系,并证明你的结论.
【答案】(1)详见解析;(2)BD= DE+CE,理由详见解析.
【解析】
(1)根据已知条件易证∠BAD=∠ACE,再利用AAS即可证明△ABD≌△ACE;(2)BD= DE+CE,由△ABD≌△ACE,根据全等三角形的性质可得AD=CE,BD=AE,由此即可证得结论.
(1)证明:∵,
∴AB=AC,
∵,,
∴∠ADB=∠CEA=90°,
∴∠EAC+∠ACE=90°,
∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
∴∠BAD=∠ACE,
在△BAD和△ACE,
,
∴△BAD≌△ACE(AAS);
(2)BD= DE+CE,理由如下:
∵△ABD≌△ACE,
∴AD=CE,BD=AE,
∴BD=AE=AD+DE=DE+CE.
【题目】嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1,R2,R3,其行经位置如图与表所示:
路径 | 编号 | 图例 | 行径位置 |
第一条路径 | R1 | _ | A→C→D→B |
第二条路径 | R2 | … | A→E→D→F→B |
第三条路径 | R3 | ▂ | A→G→B |
已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.
【题目】“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.
频数分布统计表
组别 | 成绩x(分) | 人数 | 百分比 |
A | 60≤x<70 | 8 | 20% |
B | 70≤x<80 | 16 | m% |
C | 80≤x<90 | a | 30% |
D | 90≤<x≤100 | 4 | 10% |
请观察图表,解答下列问题:
(1)表中a= ,m= ;
(2)补全频数分布直方图;
(3)D组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为 .