题目内容

(2012•随州)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.
求证:(1)△ABD≌△ACD;
(2)BE=CE.
分析:(1)根据全等三角形的判定定理SSS可以证得△ABD≌△ACD;
(2)利用(1)的全等三角形的对应角相等可以推知∠BAE=∠CAE;然后根据全等三角形的判定定理SAS推知△ABE≌△ACE;最后根据全等三角形的对应边相等知BE=CE.
解答:证明:(1)∵D是BC的中点,
∴BD=CD,
在△ABD和△ACD中,
BD=CD
AB=AC
AD=AD(公共边)

∴△ABD≌△ACD(SSS);          …(4分)

(2)由(1)知△ABD≌△ACD,
∴∠BAD=∠CAD,即∠BAE=∠CAE,
在△ABE和△ACE中,
AB=AC
∠BAE=∠CAE
AE=AE(公共边)

∴△ABE≌△ACE (SAS),
∴BE=CE(全等三角形的对应边相等).
(其他正确证法同样给分)                                …(4分)
点评:本题考查了全等三角形的判定与性质、等腰三角形的性质.解答此题也可以利用等腰三角形“三线合一”的性质来证明相关三角形的全等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网