题目内容

精英家教网如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为
 
分析:连接AD,OB,OP,根据已知可求得AP,PC的长,再根据切割线定理得,PA2=PD•PC,从而可求得PD与CD的长.
解答:精英家教网解:连接AD,OB,OP;
∵PA、PB与⊙O分别相切于点A、点B,
∴∠OAP=∠OBP=90°,∠AOB=180°-∠P=120°,
∴∠AOP=60°,AP=AOtan60°=
3

∴PC=
7

∵PA2=PD•PC,
∴PD=
3
7
7

∴CD=
4
7
7
点评:本题考查切线的性质,勾股定理,四边形的内角和为360°,切割线定理等的综合运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网