题目内容
【题目】如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.
(1)求线段BD的长;
(2)求证:直线PE是⊙O的切线.
【答案】(1)3;(2)证明见解析.
【解析】(1)连接DB,如图,利用圆内接四边形的性质得∠DEB=60°,再根据圆周角定理得到∠BDE=90°,然后根据含30度的直角三角形三边的关系计算BD的长;
(2)连接EA,如图,根据圆周角定理得到∠BAE=90°,而A为的中点,则∠ABE=45°,再根据等腰三角形的判定方法,利用BA=AP得到△BEP为等腰直角三角形,所以∠PEB=90°,然后根据切线的判定定理得到结论.
(1)连接DE,如图,
∵∠BCD+∠DEB=180°,
∴∠DEB=180°﹣120°=60°,
∵BE为直径,
∴∠BDE=90°,
在Rt△BDE中,DE=BE=×2=,
BD=DE=×=3;
(2)证明:连接EA,如图,
∵BE为直径,
∴∠BAE=90°,
∵A为的中点,
∴∠ABE=45°,
∵BA=AP,
而EA⊥BA,
∴△BEP为等腰直角三角形,
∴∠PEB=90°,
∴PE⊥BE,
∴直线PE是⊙O的切线.
练习册系列答案
相关题目