题目内容
小英和小强做一个“配色”的游戏.下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小英获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小强获胜;在其它情况下,则小英、小强不分胜负.
(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)此游戏的规则,对双方都公平吗?如果公平,请说明理由;如果不公平,请修改游戏规则,使得游戏对双方都公平.
解:(1)用列表法将所有可能出现的结果表示如下:所有可能出现的结果共有12种.
(2)不公平.
上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小英获胜的概率是;但只有2种情况才可能得到绿色,配成绿色的概率是,即小强获胜的概率是.而,故小英获胜的可能性大,这个“配色”游戏对双方是不公平的.
修改后的规则:如,红色和蓝色在一起配成紫色,这种情况下小英获胜,红色和黄色在一起配成橙色,这种情况下小强获胜,此时双方获胜的概率都是.
分析:(1)根据题意,用列表法将所有可能出现的结果,即可得答案;
(2)由(1)的表格,分析可能得到紫色、绿色的概率,得到结论;若不公平,根据题意,修改游戏规则即可.
点评:本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.
红 | (红,红) | (蓝,红) | (黄,红) |
蓝 | (红,蓝) | (蓝,蓝) | (黄,蓝) |
红 | (红,红) | (蓝,红) | (黄,红) |
黄 | (红,黄) | (蓝,黄) | (黄,黄) |
红 | 蓝 | 黄 |
上面等可能出现的12种结果中,有3种情况可能得到紫色,故配成紫色的概率是,即小英获胜的概率是;但只有2种情况才可能得到绿色,配成绿色的概率是,即小强获胜的概率是.而,故小英获胜的可能性大,这个“配色”游戏对双方是不公平的.
修改后的规则:如,红色和蓝色在一起配成紫色,这种情况下小英获胜,红色和黄色在一起配成橙色,这种情况下小强获胜,此时双方获胜的概率都是.
分析:(1)根据题意,用列表法将所有可能出现的结果,即可得答案;
(2)由(1)的表格,分析可能得到紫色、绿色的概率,得到结论;若不公平,根据题意,修改游戏规则即可.
点评:本题考查的是游戏公平性的判断.实际考查概率的计算与游戏公平性的理解,要求学生根据题意,结合实际情况,计算并比较游戏者的胜利的概率,进而得到结论.用到的知识点为:概率=所求情况数与总情况数之比.
练习册系列答案
相关题目