题目内容

已知a+x2=2003,b+x2=2004,c+x2=2005,且abc=6012,求
a
bc
+
b
ca
+
c
ab
-
1
a
-
1
b
-
1
c
的值.
∵a+x2=2003,b+x2=2004,c+x2=2005,
∴b-a=1,c-b=1,c-a=2,
原式=
a2+b2+c2
abc
-(
1
a
+
1
b
+
1
c

=
a2+b2+c2
abc
-
bc+ac+ab
abc

=
a2+b2+c2-bc-ac-ab
abc

=
a(a-c)+b(b-a)+c(c-b)
abc

∵b-a=1,c-b=1,c-a=2,abc=6012,
∴原式=
-2a+b+c
6012

=
-2a+a+1+c
6012

=
1+c-a
6012

=
1+2
6012

=
1
2004
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网