题目内容
【题目】如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=6,BC=8,则DE的长为( )
A.6.25
B.6.35
C.6.45
D.6.55
【答案】A
【解析】解:由翻转变换的性质可知,∠EBD=∠CBD,
∵AD∥BC,
∴∠EDB=∠CBD,
∴∠EDB=∠EBD,
∴EB=ED,
设DE=x,则BE=x,AE=8﹣x,
在Rt△ABE中,x2=62+(8﹣x)2,
解得,x=6.25,
故选:A.
【考点精析】本题主要考查了矩形的性质和翻折变换(折叠问题)的相关知识点,需要掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能正确解答此题.
练习册系列答案
相关题目