题目内容
77、阅读材料后再解答问题
阿拉伯数学家阿尔•花拉子利用正方形图形巧妙解出了一元二次方程x2+2x-35=0的一个解.
[阿尔.花拉子解法]将边长为xm的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2•x•1+1•1,而由x2+2x-35=0变形及x2+2x+1=35+1(如图所示)
即左边边长为x+1的正方形面积为36.
所以(x+1)2=36,则x=5.
你能运用上述方法构造出符合方程x2+8x-9=0的一个正根的正方形吗?试一试吧!
阿拉伯数学家阿尔•花拉子利用正方形图形巧妙解出了一元二次方程x2+2x-35=0的一个解.
[阿尔.花拉子解法]将边长为xm的正方形和边长为1的正方形,外加两个长方形,长为x,宽为1,拼合在一起面积就是x2+2•x•1+1•1,而由x2+2x-35=0变形及x2+2x+1=35+1(如图所示)
即左边边长为x+1的正方形面积为36.
所以(x+1)2=36,则x=5.
你能运用上述方法构造出符合方程x2+8x-9=0的一个正根的正方形吗?试一试吧!
分析:因为x2+8x-9=x2+8x+16-25=0,所以x2+8x+16=25,即(x+4)2=25,由此可以构造出边长为x+4的正方形,然后可以得到x+4=5即可解题.
解答:解:如图所示,大正方形边长为x+4,四个面积和为x2+4x+4x+16=x2+8x+16,
而x2+8x-9=x2+8x+16-25=0.
所以x2+8x+16=25,即x+4=5,所以x=1.
而x2+8x-9=x2+8x+16-25=0.
所以x2+8x+16=25,即x+4=5,所以x=1.
点评:此题是信息题,首先读懂题意,正确理解题目解题意图,然后抓住解题关键,可以探索得到大正方形的边长为x+4,而大正方形面积为25,由此可以求出结果.
练习册系列答案
相关题目
先阅读下列材料,再解答后面的问题.
材料:密码学是一门很神秘、很有趣的学问,在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系--密钥,就可以破译它.
密码学与数学是有关系的.为此,八年一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母--明码对照表”:
例如,以y=3x+13为密钥,将“自信”二字进行加密转换后得到下表:
因此,“自”字加密转换后的结果是“9140”.
问题:
(1)请你求出当密钥为y=3x+13时,“信”字经加密转换后的结果;
(2)为了提高密码的保密程度,需要频繁地更换密钥.若“自信”二字用新的密钥加密转换后得到下表:
请求出这个新的密钥,并直接写出“信”字用新的密钥加密转换后的结果.
材料:密码学是一门很神秘、很有趣的学问,在密码学中,直接可以看到的信息称为明码,加密后的信息称为密码,任何密码只要找到了明码与密码的对应关系--密钥,就可以破译它.
密码学与数学是有关系的.为此,八年一班数学兴趣小组经过研究实验,用所学的一次函数知识制作了一种密钥的编制程序.他们首先设计了一个“字母--明码对照表”:
字母 | A | B | C | D | E | F | G | H | I | J | K | L | M |
明码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
字母 | N | O | P | Q | R | S | T | U | V | W | X | Y | Z |
明码 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 13 | 24 | 25 | 26 |
汉字 | 自 | 信 | |||
拼音 | Z | I | X | I | N |
明码:x | 26 | 9 | 24 | 9 | 14 |
密钥:y= | |||||
密码:y | 91 | 40 |
问题:
(1)请你求出当密钥为y=3x+13时,“信”字经加密转换后的结果;
(2)为了提高密码的保密程度,需要频繁地更换密钥.若“自信”二字用新的密钥加密转换后得到下表:
汉字 | 自 | 信 | |||
拼音 | Z | I | X | I | N |
明码:x | 26 | 9 | 24 | 9 | 14 |
密钥:y= | |||||
密码:y | 70 | 36 |