题目内容

(本小题满分12分)

在平面直角坐标系xOy中,抛物线的解析式是y =+1,点C的坐标为(–4,0),平行四边形OABC的顶点AB在抛物线上,AB与y轴交于点M,已知点Q(xy)在抛物线上,点P(t,0)在x轴上.

 (1) 写出点M的坐标;

 (2) 当四边形CMQP是以MQPC为腰的梯形时.

① 求t关于x的函数解析式和自变量x的取值范围;

② 当梯形CMQP的两底的长度之比为1:2时,求t的值.

 

【答案】

 

(1)M (0,2)

(2)①t = –+ x –2

–8.

【解析】

(1) ∵OABC是平行四边形,∴AB∥OC,且AB = OC = 4,

∵A,B在抛物线上,y轴是抛物线的对称轴,

∴ A,B的横坐标分别是2和– 2,

代入y =+1得, A(2, 2 ),B(– 2,2),

∴M (0,2),                                             ---2分

 (2) ① 过点Q作QH ^ x轴,设垂足为H, 则HQ = y ,HP = x–t ,

由△HQP∽△OMC,得:, 即: t = x – 2y ,

∵ Q(x,y) 在y = +1上,

∴ t = –+ x –2.                        ---2分

当点P与点C重合时,梯形不存在,此时,t = – 4,解得x = 1±,

当Q与B或A重合时,四边形为平行四边形,此时,x = ± 2

∴x的取值范围是x ¹ 1±,

且x¹± 2的所有实数.                          ---2分

② 分两种情况讨论:

1)当CM > PQ时,则点P在线段OC上,                                                            

     ∵ CM∥PQ,CM = 2PQ ,

∴点M纵坐标为点Q纵坐标的2倍,即2 = 2(+1),解得x = 0 ,

∴t = –+ 0 –2

= –2  .                                             --- 2分

2)当CM < PQ时,则点P在OC的延长线上,

     ∵CM∥PQ,CM = PQ,

∴点Q纵坐标为点M纵坐标的2倍,即+1=2´2,解得: x = ±.     ---2分                                                 

当x = –时,得t = ––2 = –8 –,                       

当x =时,

得t =–8.                                  ---2分 

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网